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• A trajectory planning module is developed able to tackle with obstacles.
• Simulations of realistic scenarios are included.

a r t i c l e i n f o

Article history:
Received 12 September 2016
Available online 24 February 2017

Keywords:
UAV
Slung-load system
Coordination control
Obstacle avoidance
MPC

a b s t r a c t

In this paper we present a multi-level and distributed control system, based on a robust Model Predictive
Control (MPC) technique, for a multi-body slung-load system. In particular, we consider a swarm of
autonomous multi-copters which are connected by wires to a suspended payload. The payload reference
trajectory is obtained through a constrained optimization, then the reference trajectory for each UAV
is derived on the basis of the known shape of the formation, while taking into account operational
constraints such as collision avoidance and cruise speed. Trajectory tracking is performed by a multi-
level flight control system based on a MPC technique and a PID control system. Numerical simulations
have been performed in order to test the control system in realistic scenarios. In particular, the multi-
copters are modeled by the six Degrees-of-Freedom (6DOF) model, the constraint forces on the wires are
calculated using the Udwadia–Kalaba equation and the external disturbances (atmospheric turbulence
and gust) are included in the simulation. Simulation results are encouraging, thus making the proposed
system an appealing candidate for similar applications.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Recent developments in drone technology have made slung-
load systems practical in both commercial and scientific applica-
tions [1–3]. In order to increase the maximum payload weight,
a slung-load system composed by a swarm of Unmanned Aerial
Vehicles (UAVs) connected by wires to the payload is appealing.

There are twomain challenges in the cooperative load transport
problem. First of all, interactions among the UAVs, and between
the UAVs and the payload are introduced by the wires. These
interactions can be considered as external disturbances acting on
theUAVs [1,2]; then the control systemmust be designed including
some requirements of robustness. Moreover, the control system
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must guarantee synchronization among the UAVs to obtain coop-
eration and to avoid collisions.

So far, to solve the cooperative load transport problem and
its challenges, hierarchical controllers, geometrical controllers and
nonlinear controllers have been used.We here explore the benefits
of using Model Predictive Control (MPC) for designing a multi-
level and distributed control system, computing the UAVs refer-
ence trajectories as the solution to a constrained optimization.
The advantage of the proposed solution is the capability of taking
into account dynamic operative scenarios, obstacle avoidance and
performance constraints, control input saturation, requirement of
robustness and sustainable computational cost.

1.1. Related works

Several works have focused on the control problem of coopera-
tive load transport, proposing different approaches.
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The geometrical controller introduced by T. Lee in [4] and [5]
allows to follow a desired trajectory of both the payload position
and attitude. In particular, the Voronoi tessellation technique is
exploited to obtain the formation trajectory planning while tak-
ing into account collision-avoidance constraints. A geometrical
controller is then designed using a coordinate-free form of the
equations of motion, derived according to Lagrange mechanics.

Synchronization and tracking trajectory problems can be
treated separately using a hierarchical controller. In [6] consensus
and graph theory is employed for multi-copters synchronization
and distributed control, respectively. In [7] first the controller
computes the desired forces on the cables to follow the reference
trajectory, then the reference position, speed and thrust of each
UAV are computed to obtain the desired forces.

Other approaches are based on the use of nonlinear controllers,
which enable to take into account the nonlinearity of the multi-
copters dynamic model. In [8] a slung-load system composed of
two quad-copters is modeled. The nonlinear controller is obtained
by a partial feedback linearization technique, and the collisions
are avoided introducing a repulsion force among the UAVs. In [9]
a nonlinear kinematic controller is used to compute the UAVs
reference velocity vectors, through the feedback of the relative
angles between themulti-copters and the load. In [10], the authors
validate, by means of numerical simulations, a cooperative control
strategy with coordination achieved through synchronization of
the path parametrization, while the control law is computed using
the back-stepping technique.

Experimental results are included in [11,12], where the authors
consider a swarm of indoor quad-copters tomove the payload, and
the control signals are obtained from the feedback of the UAVs and
load positions provided by external cameras.

1.2. Contribution

In this paper, we propose a multi-level and distributed control
system for a multi-body slung-load system. In particular, we con-
sider different controlmodules to solve the following control prob-
lems: (i) trajectory planning; (ii) trajectory tracking; (iii) velocity
and attitude control.

To obtain synchronization, the UAV reference trajectories are
computed from the load trajectory assuming that the formation
shape is known. The load trajectory is expressed as a sequence of
way-points, which are the solution of a sequence of constrained
optimization problems. This approach allows us to solve differ-
ent coordination and cooperation problems [13], and it allows
us to take into account operational constraints such as obstacles
avoidance and UAV performance constraint. For this application,
at each discrete time instant the new way-point is computed on
the basis of the obstacle positions, the multi-copter cruise speed,
the previous way-point and the target point.

The trajectory tracking module is based on a decentralized and
robust MPC algorithm [14], in which at each discrete time instant
each multi-copter solves only its own constrained optimization
problem to obtain the control signals. This algorithm allows us to
take into account the presence of control input saturations, the
requirement of robustness and sustainable computational cost for
a real application. The functional cost and the constraint functions
are calculated assuming the knowledge of a reference trajectory
and a prediction of the system behavior over a future horizon.

Finally, the control module for the control of UAV velocity and
attitude is based on a PID control system, that computes themulti-
copter motor speed on the basis of the MPC signal inputs.

We validate the designed flight control system by numerical
simulations of a realistic scenario. In particular, the multi-copters
aremodeled as a rigid body and the 6DOFmodel [15] is used for the
simulation. The payload is modeled as a point mass in the space

and the constraint forces on the wires acting on each drone are
calculated using the Udwadia–Kalaba equation [16]. The controller
robustness is tested by introducing atmospheric turbulence and
gust in the simulations.

The paper is organized as follows. In Section 2 we describe the
dynamic model of the multi-body system used for the numerical
simulation. Section 3 presents the architecture of the flight control
system. Section 4 illustrates the optimization problem for com-
puting the load reference trajectory, while Section 5 illustrates the
MPC optimization problem. In Section 6 we describe the scenarios
which have been simulated and the numerical results; a compari-
son with some results appeared in [10] is also included. Finally, in
Section 7 we draw some conclusions.
Notation. In the sequel by the symbol ∥ · ∥ we will denote the
Euclidean norm, whereas by ∥ · ∥T we will denote the Euclidean
normweighted by thepositive definitematrix T . ByA ≻ 0wemean
that each element of the matrix A is greater than 0. The symbol
∧ denotes the cross product between two vectors. The symbol ×

denotes the Cartesian product between two sets. The symbols ⊕

and ⊖ denote respectively the Minkowski sum and the Pontrya-
gin difference [17]. The symbol (·)+ denotes the Moore–Penrose
Pseudoinverse [18]. With C n(a) we denote the set obtained by
[−a; a]1 × [−a; a]2 × · · · [−a; a]n, with In we denote the identity
matrix of order n and with 0m×n we denote them − by − nmatrix
of zeros.

2. Slung-load system dynamic model

We consider a slung-load system composed by M identical
multi-copters linked by M wires to a payload. In the following we
describe the nonlinear dynamic model of each UAV, and the pay-
load dynamics. Thenwe characterize the interconnected systemby
using the Udwadia–Kalaba equation, which allows us to compute
constraint forces on the wires and acting on each UAV.

2.1. Multi-copter dynamic model

We introduce two reference frames: a body fixed frame B with
origin OB located in the Center of Gravity (CoG) of the UAV, and an
inertial earth frame E. The dynamic equations in the inertial earth
frame E are

V̇B = m−1

(
−Ω ∧ mVB + τg + τp + τw + τa

)
(1)

Ω̇ = I−1
B

(
−Ω ∧ IBΩ + νp + νa

)
(2)

wherem and IB are respectively the mass and inertial matrix of the
multi-copter, VB is the velocity vector in the body fixed frame and
Ω =

[
Ωx Ωy Ωz

]T is the angular velocity vector . In Eqs. (1)
and (2) external forces and moments need to be specified. More
specifically, we consider the contributions of gravity force τg , the
propulsive forces τp and moments νp, the aerodynamic drag τa
andmoments νa due to atmospheric turbulence and the constraint
forces on the wire τw . Following the approach in [1] and in [16],
we impose that the wires are connected from the CoG of the UAV
to the CoG of the payload; under this assumption the UAVs attitude
dynamics are unaffected.

The inertial position p is obtained from equations

ṗ = RBE(Θ)VB (3)

ṘBE = S(Ω)RBE (4)

where ṗ =
[
Vx Vy Vz

]T is the velocity vector in the body inertial
earth frame, Θ is the attitude with respect to the inertial earth
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Fig. 1. Slung-load control system architecture.

frame, RBE(Θ) is the rotation matrix from the body fixed frame to
the inertial earth frame and S(Ω) is the skew-symmetric matrix

operator defined as S(Ω) =

[
0 −Ωz Ωy

Ωz 0 −Ωx
−Ωy Ωx 0

]
.

2.2. Payload dynamic model

The payload is modeled as a point mass ml in the space whose
position pl is obtained from

mlp̈l = [0 0 mlg]
T

+ τl (5)

where τl = −
∑M

i=1τ
[i]
w is the sum of the constraint forces on the

wires connected to the UAVs.

2.3. Multi-body dynamic model

To find the interconnected system constraints we assume that
the length dwire of each wire is constant and the wires are taut. In
particular, for the ith wire we impose

∥L[i]
∥
2
− d2wire = 0 (6)

where L[i]
= p[i]

−pl is the vector between the ithmulti-copter and
the payload. The constraint equation is obtained from the second
derivative of Eq. (6)

2L̈[i]T L[i]
+ 2L̇[i]T L̇[i]

= 0 (7)

which, in order to use the Udwadia–Kalaba equation, may be
rewritten in the following equivalent form:

A[i]
uk(P, V )V̇ = b[i]

uk(P, V )

where P = [p[1] . . . p[M] pl]T , V = [V [1]
B . . . V [M]

B ṗl]T ,
τL = [τ [1]

w . . . τ [M]
w τl]

T . More specifically

A[i]
uk = L[i]T [03×3(i−1) R[i]

BE 03×3(M−1) −I3
]

b[i]
uk = −L[i]T S(Ω [i])R[i]

BEV
[i]
B − L̇[i]T L̇[i]

and according to [16] the vector τL is computed though the
Udwadia–Kalaba equation

τL = M
1
2 (AukM−

1
2 )+(buk − Aukv̇) (8)

where M , Auk, buk are the concatenations of m[i], A[i]
uk, b

[i]
uk and v̇

collects the UAVs and payload unconstrained accelerations. Eq. (8)
is used to develop the multi-body slung-load simulator.
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Fig. 2. Shape formation definition.

3. Control system architecture

The control system ismade of twomain parts as shown in Fig. 1:
the reference trajectory layer and the multi-copter flight control
system.

The reference trajectory layer is implemented in a central unit,
e.g. the control ground station, and it is characterized by the
sampling time ∆t . The multi-copter flight-control system is im-
plemented on board and is characterized by two control loops
with two different sampling times, denoted by ∆t and ∆tinner for
the outer and inner loops, respectively, with ∆t > ∆tinner . We
assume that the control ground station and the UAVs flight-control
systems are linked through an ideal (instantaneous and error-free)
communication network.

The inputs of the reference trajectory layer are the final payload
position zgoal and the position of the no-fly zones,while the outputs
are the reference trajectory of each multi-copter defined as a
sequence of way-points. In particular, at the discrete time instant
t the reference trajectory layer computes the UAVs way-points
at discrete time instant t + N − 1, where N is the length of the
optimization horizon of the MPC technique. Assuming mission at
constant and fixed altitude, the way-point of the ith multi-copter
z̃[i]
t+N−1 at the time instant t + N − 1 is obtained by the knowledge
of the projection of the payload trajectory in the UAVs horizontal
plane, on the basis of the distance l̃t+N−1 and the angle α[i] (see
Fig. 2)

z̃[i]
t+N−1 = z̃[load]

t+N−1 + l̃t+N−1

[
cosα[i]

sinα[i]

]
(9)

where α[i] is a fixed geometric configuration parameter of the
slung-load system, while the point z̃[load]

t+N−1 and the distance l̃t+N−1
are computed at each discrete time instant by the reference trajec-
tory layer as the solution of the constrained optimization problem
described in the following section.

Considering the flight control system of the ith multi-copter,
the outer loop implements a robust MPC algorithm to compute
the reference inertial velocities Ṽ [i]

xt and Ṽ [i]
yt that are the input

to the inner loop. To define the MPC optimization problem, we
need to compute the sequences of reference states x̃[i]

{t,...,t+N−1} and
input ũ[i]

{t,...,t+N−1} from the sequence ofway-points of the reference
trajectory, and for this reason we introduce in the outer loop the
reference state/input trajectory layer. The reference velocity is
finally obtained from the MPC control input a[i]

xt and a[i]
yt .

The inner loop computes the multi-copter motors speed by
means of two PID control systems to obtain pitch θ̃ and roll φ̃

Fig. 3. Inner loop architecture.

references angles (Fig. 3):

θ̃ (t) = Kpex(t) + Ki

∫ t

0
ex(τ )dτ + Kd

dex(t)
dt

φ̃(t) = Kpey(t) + Ki

∫ t

0
ey(τ )dτ + Kd

dey(t)
dt

where ex(t) = Ṽx − Vx, ey(t) = Ṽy − Vy are the difference
between the UAV inertial velocities and the reference velocities
and Kp, Ki, Kd are the control gains. Finally, for the attitude and
altitude control, we use the classical approach described in [19].

4. Reference trajectory generation

At each discrete time instant t , the reference trajectory layer
sends to each flight-control system the corresponding UAV refer-
ence trajectory over a future horizon of length N using a receding
horizon strategy, where only the new way-point at time t +N − 1
is calculated.

Basing on Eq. (9), the UAV reference trajectories are computed
from the load position z̃[load]

t+N−1 and distance l̃t+N−1. To obtain fea-
sible trajectories, operational constraints about the multi-copter
positions are taken into account. In particular, the points z̃[i]

t+N−1 for
i = 1, . . . ,M can be obtained from the optimization parameters as

z̃[i]
t+N−1 =

[
1 0 cosα[i]

0 1 sinα[i]

][
z̃[load]
t+N−1
l̃t+N

]
. (10)

Then, the reference trajectory layer at each discrete time instant
computes the solution of the following constrained optimization
problem

min
z̃[load]t+N−1,l̃t+N−1

β

(
γ

z̃[load]
t+N−1 − z̃[load]

t+N−2

2 +

z̃[load]
t+N−1 − zgoal

2
T

)
+
(
1 − β

)l̃t+N−1 − l
2 (11)

subject to obstacle avoidance constraints and

z̃[load]
t+N−1 ∈ Bt+N−1 (12a)

z̃[i]
t+N−1 ∈ Z i = 1, . . . ,M (12b)

l̃t+N−1 ∈
[
l; l
]
. (12c)

The quadratic cost function (11) is the linear combination of two
terms: the former related to the distance from the target and the
latter related to the formation shape. More specifically, the first
term allows us to minimize the payload distance from the target,
while the second one allows us to maximize the plan distance
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Fig. 4. Set Bt+N−1 .

between the payload and the multi-copters, and consequently the
distances between the multi-copters. The cost function is calcu-
lated from the trajectory point z̃[load]

t+N−2, the final trajectory point
z̃goal and the reference load–UAV distance l. The weights T , γ and
β are tuning knobs satisfying T ≻ γ I2 ≻ 0 and 0 < β <

1. In particular, when β → 0 the distances between the UAVs
are constant, while with β → 1 we relax the constraint on the
distances between the UAVs, and in this case the payload reference
trajectory will be closer to the obstacles.

The constraint (12a) allows us to control the norm of the pay-
load inertial velocity. In particular, the set Bt+N−1 is a circular set
of center z̃[load]

t+N−2 and radius dcruise = ∆tVcruise (see Fig. 4), where
Vcruise is the reference for the norm of the payload inertial speed.

The constraint (12b) guarantees that the reference states
x̃[i]
{t,...,t+N−1} computed from the sequence of way-points of the ref-
erence trajectory, to define the MPC problem, are feasible. The set
Z depends on the algorithm applied in the outer control loop. For
this reason, the set Z is computed after defining MPC optimization
problem using the algorithm in [13].

The constraint (12c) avoids collisions among the UAVs and
guarantees distances shorter than wires length. Then, l and l are
fixed satisfying

l >
dUAV + δ

sin π
M

(13a)

l < dwire. (13b)

Obstacle avoidance constraints are formulated by ensuring co-
ordination between multi-copters. Then, the new way-points al-
low all multi-copters to avoid the no-fly zone without breaking
up the formation. Referring to the ith multi-copter and the hth
obstacle, if the obstacle is circular with center in z[h]

obs and radius
R[h]
obs, the obstacle avoidance constraint can be formulated asz̃[i]
t+N−1 − z[h]

obs

 ≥ d[hi] (14)

where d[hi]
= R[h]

obs + dUAV + δ, dUAV is the radius of the circle
surrounding the multi-copters and the distance δ is a safety dis-
tance which takes into account the maximum uncertainty about
the UAV positions. This distance is estimated using the algorithm
in [13]. Moreover, to avoid collision between wires and obstacles,
we impose d[hi] > l/2. If the hth obstacle is not circular, we
introduce a circular no-fly zone that surrounds the obstacle so
to follow the same approach described above. In order to deal
with the nonlinearity and the non-convexity of the constraint in
(14), we apply a linear approximation as described in [13]. We
build a polytope P

[hi]
obs with r [hi]

obs edges that circumscribes the no-
fly zone centered in z[h]

obs with radius d[hi] and we introduce the
linear operator ρ[hi](k) which computes the distance between the

Fig. 5. Linear approximation for obstacle avoidance constraints.

trajectory point of ithmulti-copter and the kth edge of the polytope
P

[hi]
obs (as shown in Fig. 5)

ρ[hi](k) =
1√

a[hi]
k

2
+ b[hi]

k
2

[
a[hi]
k b[hi]

k 1
] [z̃[i]

t+N−1
1

]
(15)

where a[hi]
k and b[hi]

k are the coefficients that define the equation
of the kth edge of the polytope P

[hi]
obs . It is worth noting that this

linearization of the constraint (14) is conservative only because the
circular no-fly zone is approximated by means of a polytope.

5. Model predictive control algorithm

The control inputs to track the reference trajectory are calcu-
lated by implementing a distributed and robust MPC algorithm.
Each UAV computes its own control inputs independently from the
other multi-copters using the same algorithm. Indeed the interac-
tion between the aircrafts has already been taken into account by
the reference trajectory layer.

To implement the robust MPC algorithm, the outer control loop
solves a constrained optimization problem at each discrete time
instant. The cost and constraint functions are evaluated by using
the reference trajectory and a prediction of the UAV behavior. For
this application, to predict the multi-copter behavior we use the
dynamic model of a material point in the plane. The sequences
of reference states and inputs are calculated from the geometrical
reference trajectory by the input/state layer (see Fig. 1).

5.1. Definition of the nominal model

The dynamic model of a material point in the plane can be
defined in terms of position in the inertial earth frame

[
xE yE

]
,

course angle Ψ and linear speed V :⎧⎪⎨⎪⎩
ẋE = V cosΨ

ẏE = V sinΨ

Ψ̇ = ω

V̇ = a

(16)

where the input of system are the angular velocityω and the linear
acceleration a.

We obtain a linear model of a material point (16) following the
procedure described in [20]. Letting η1 = xE , η2 = ẋE , η3 = yE ,
η4 = ẏE and introducing the linear accelerations ax and ay, we
obtain a set of two decoupled double integrators⎧⎪⎨⎪⎩

η̇1 = η2
η̇2 = a cosΨ − Vω sinΨ ≡ ax
η̇3 = η4
η̇4 = a sinΨ + Vω cosΨ ≡ ay.

(17)
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We compute a discretization of Eq. (17) with sampling time ∆t by
means of the following Euler discretization:

xt+1 = Axt + But + wt (18a)
zt+1 = Cxt+1 (18b)

where

xt =
[
η1t η2t η3t η4t

]T
, ut =

[
axt
ayt

]
, zt =

[
xEt
yEt

]
,

A =

⎡⎢⎣1 ∆t 0 0
0 1 0 0
0 0 1 ∆t
0 0 0 1

⎤⎥⎦ , B =

⎡⎢⎢⎢⎢⎢⎣
∆t2

2
0

∆t 0

0
∆t2

2
0 ∆t

⎤⎥⎥⎥⎥⎥⎦ ,

C =

[
1 0 0 0
0 0 1 0

]
.

The disturbance wt has been introduced to model uncertainties
and approximation errors of the UAV model and external distur-
bances due to the atmospheric turbulence and the constraint forces
on wires, which are included in the simulator using the Udwadia–
Kalaba equation (8) but considered unknown in the control design.
We assume thatwt ∈ W, whereW is a knownboundeduncertainty
set. We denote the set of feasible states by xt ∈ X, where X is
a convex set. It can be readily verified that the triple (A, B, C) is
reachable, observable, and does not have invariant zeros on the
unit circle.

5.2. Reference state/input trajectory

In order to calculate the cost function of the optimization
problem, the sequence of references states x̃[i]

{t,...,t+N−1} and inputs
ũ[i]

{t,...,t+N−1} of the nominal model must be computed from the
sequence of N geometrical points z̃[i]

{t,...,t+N−1} .
To solve this problem, we implement in the state/input trajec-

tory layer the following dynamic system[
x̃[i]
t+1

ẽ[i]
t+1

]
=

[
A 0

−C I2

][
x̃[i]
t

ẽ[i]
t

]
+

[
B
0

]
ũ[i]
t +

[
0
I2

]
z̃[i]
t+1 (19)

where the new state variable ẽ[i]
t+1 is the integral of the tracking

error z̃[i]
t+1 − Cx̃[i]

t . Given the reachability of the pair (A, B) and the
absence of invariant zeros in z = 1 of themodel (18a), it is possible
to compute the control law

ũ[i]
t = K̃xx̃

[i]
t + K̃eẽ

[i]
t (20)

where the gain K̃ =
[
K̃x K̃e

]
can be designed with any stabilizing

algorithm, such as LQ or pole placement control.

5.3. Definition of the MPC optimization problem

At each discrete time instant the ith flight control system solves
the following constrained optimization problem in order to imple-
ment the robust MPC algorithm discussed in [14]

min
x̂[i]t ,û[i]

{t,...,t+N−1}

N−1∑
j=0

x̂[i]
t+j − x̃[i]

t+j

2
Q

+

û[i]
t+j − ũ[i]

t+j

2
R

+

x̂[i]
t+N − x̃[i]

t+N

2
P

(21)

subject to

x̂[i]
t+1 = Ax̂[i]

t + Bû[i]
t (22a)

x̂[i]
t+j ∈ X̂[i], ∀j = 1, . . . ,N − 2 (22b)

x[i]
t − x̂[i]

t ∈ ε[i] (22c)

C(x̂[i]
t+j − x̃[i]

t+j) ∈ ∆[i]
z , ∀j = 1, . . . ,N − 2 (22d)

x[i]
t+N−1 − x̂[i]

t+N−1 ∈ κ [i]ε[i]. (22e)

The set ε[i] in (22c) is defined as the robust positively invariant
(RPI) set

ε[i]
=

∞⨁
j=0

(A + BK )jW[i] (23)

where the gain K must be defined so as to obtain (A + BK ) to be
Schur stable. In particular, we compute ε[i] as an outer approxima-
tion of the minimum RPI using the method discussed in [21]. The
set X̂[i] in (22b) is computed as

X̂[i]
= X[i]

⊖ ε[i]. (24)

The set∆[i]
z ⊆ R2 in (22d) is characterized by a trade-off: a small

size of this set permits only small deviations of the nominal state
trajectory with respect to the reference, but it can have the effect
of limiting the robustness of the control scheme. Finally, κ [i] > 0
in (22e) is a tuning parameter.

In the functional cost, the symmetric weightingmatrices Q ≥ 0
and R > 0 are free design parameters, while P is assumed to satisfy
the Lyapunov equation

(A + BK )TP(A + BK ) − P = −(Q + K TRK ). (25)

From the solution of the optimization problem we obtain û[i]
t|t

and x̂[i]
t , and the control inputs for the ith multi-copter are calcu-

lated as

u[i]
t = û[i]

t|t + K (x[i]
t − x̂[i]

t ). (26)

6. Numerical simulations

The proposed flight control system was tested using Simulink.
We developed a simulator of amulti-body slung-load system com-
posed by M = 4 micro quad-copters with m = 1.4 kg, dUAV =

0.3 m and α[i]
= iπ/2 for i = 1, . . . , 4, the payload was assumed

to have massml = 0.4 kg.
As a first example, we have considered the scenario simulated

in [10], where the authors use a nonlinear controller based on
back-stepping technique. In this case, the trajectory is assigned,
both in terms of position and velocity, and hence we test only our
modules for trajectory tracking and velocity and attitude control.
In particular, the payload is moved along a circular path of radius
R = 10 m, accelerating to a maximum speed of 3 m/s, and then
slowed down to zero. Fig. 6 show the performance obtained with
our MPC, which are comparable with those presented in [10].

Then we have considered an example to test all the features of
our control system. To this aim we have considered a scenario in
which the payload has to be moved from the point

[
5.0 5.0

]
m

to the point
[
100.0 100.0

]
m in a region characterized by four

circular obstacles with:

z[1]
obs =

[
40.0 45.5

]
m, R[1]

obs = 5.0 m

z[2]
obs =

[
40.0 24.5

]
m, R[2]

obs = 5.0 m

z[3]
obs =

[
70.0 57.0

]
m, R[3]

obs = 5.0 m

z[4]
obs =

[
70.0 70.0

]
m, R[4]

obs = 5.0 m.
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(a) Snapshots of payload trajectory at different times. (b) Payload speed.

Fig. 6. Scenario simulated to test the performance of the trajectory tracking and speed and attitude control modules.
Source: This scenario is taken from [10].

Fig. 7. Payload trajectories at different β values.

In order to allow a real-time implementationwehave chosen∆t =

0.5 s and ∆tinner = 0.01 s.
The free-tuning parameters of the flight control system has

been fixed through a trial and error procedure to obtain satisfy-
ing performance in the absence of atmospheric disturbances. In
particular, the MPC optimization problem (22) has been defined
by setting the following parameters. Considering the mission goal
and the UAV performance we have set X[i]

=
[
0.0 110.0

]
×[

−5.0 5.0
]

×
[
0.0 110.0

]
×
[
−5.0 5.0

]
for i = 1, . . . , 4

(dimension in m and m/s, respectively). For each i = 1, . . . , 4, we
have setW[i]

= C 4(0.01),∆[i]
z = C 2(0.001) and κ [i]

= 105. The cost
function has been defined by the length of the prediction horizon
N = 10 and the weighting matrices Q = I4 and R = 180I2. Finally,
the matrix K is the gain of the LQ regulator with the weighting
matrices Q and R. The matrix K̃ used to compute the reference
control law (20) is the gain of the LQ regulator with the weighting
matrices Q̃ = I6 and R̃ = 2000I2. To compute the reference
trajectory, the optimization problem (12) has been defined setting
γ = 1, T = 10I2, l = 3 and l = 5. The coefficient β has been fixed
by analyzing the different reference trajectories, i.e. in Fig. 7 we
show the two trajectories obtained setting respectively β = 10−3

and β = 10−5. In particular, we have chosen β = 10−3 to relax
the constraint on the distances between the UAVs and the payload,
and in thisway the payload reference trajectory passes through the
obstacles #1 and #2 avoiding quick changes of direction.

The flight control system robustness has been tested by simu-
lating the above scenario with different atmospheric disturbances.

We have considered the Von Karman wind turbulence model and
thediscretewind gustmodel byusing the Simulink Aerospace Block-
set, according to the references [22,23]. We have defined twenty
five realistic atmospheric conditions by setting five amplitude
values for gust model and five wind speed values for turbulence
model and we have analyzed the performance decay, the growing
of the constraints forces and the fulfillment of collision avoidance
constraints. The performance of the slung-load control system
have been evaluated through the tracking trajectory error

E(i) =

z[l]
t0+i∆t − z̃[l]

t0+i∆t

 . (27)

More specifically, we have considered the mean of the tracking
trajectory error

Emean =
1

Ntot

Ntot∑
i=0

E(i) (28)

and the maximum of the tracking trajectory error

Emax = max{E(1), E(2), . . ., E(Ntot )} (29)

as performance indexes.
As an example of the results obtained, in the following we

show the results for the simulation characterized by amplitude
gust Vgust =

[
2 2 0

]T m/s and turbulence wind speed Vturb =

5 m/s.
Figs. 8(a) and 8(b) show a comparison between the payload

reference trajectory and the actual trajectory. The tracking error is
shown in Fig. 8(c) and the performance indexes are Emean = 0.53m
and Emax = 1.38 m.

In spite of the tracking error, the collision and obstacle avoid-
ance constraints are satisfied. Fig. 9 show that the no-fly zones are
not violated and theminimumsafety distances betweenUAV1 and
others are satisfied.

To evaluate the feasibility of the slung-load control system,
we have checked the constraint force magnitudes to avoid wires
breaking, and we have checked the quad-copters attitude to avoid
unrealistic maneuvers. Fig. 10(a) shows that the greatest forces are
obtained during the initial acceleration and maneuvers to change
the planar distance between payload and quad-copters. Fig. 10(b)
shows the attitude of quad-copter #1 during the flight mission:
it can be seen that the flight control system has required realistic
maneuvers.

The performance of the flight control system when the atmo-
spheric conditions vary, are synthesized in Table 1. In particular,
as expected, the performance worsen when increasing the distur-
bances, but the mission goal is completed and the collisions are
avoided with realistic maneuvers and constraint forces in all cases
except the most severe conditions.
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(a) Payload trajectory in inertial frame. (b) Actual trajectories.

(c) Payload tracking error.

Fig. 8. Trajectory tracking performance.

Table 1
Performance indexes in different atmospheric conditions.

Vgust =

[
1
1
0

]
Vgust =

[
1.5
1.5
0

]
Vgust =

[
2
2
0

]
Vgust =

[
2.5
2.5
0

]
Vgust =

[
3
3
0

]

Vturb = 0 Emean = 0.35 Emean = 0.36 Emean = 0.37 Emean = 0.39 Emean = 0.38
Emax = 1.12 Emax = 1.12 Emax = 1.12 Emax = 1.12 Emax = 1.24

Vturb = 2.5 Emean = 0.40 Emean = 0.43 Emean = 0.46 Emean = 0.50 Emean = 0.52
Emax = 1.12 Emax = 1.12 Emax = 1.15 Emax = 1.31 Emax = 1.38

Vturb = 5 Emean = 0.45 Emean = 0.48 Emean = 0.53 Emean = 0.60 Emean = 0.67
Emax = 1.17 Emax = 1.26 Emax = 1.38 Emax = 1.56 Emax = 2.15

Vturb = 7.5 Emean = 0.49 Emean = 0.57 Emean = 0.67 Emean = 0.72 Mission
Emax = 1.29 Emax = 1.60 Emax = 1.92 Emax = 2.15 Not completed

Vturb = 10 Emean = 0.60 Emean = 0.69 Emean = 0.73 Mission Mission
Emax = 1.89 Emax = 1.99 Emax = 2.04 Not completed Not completed

With the most severe atmospheric conditions, the slung-load
control system is not able to complete the flight mission. To
complete the mission in this condition, we needed to change the
set of parameters of the flight control system. In particular, we
have increased the uncertainty set, i.e. fixing W[i]

= C 4(0.02) for
each i = 1, . . . , 4, to consider the external disturbances due to
atmospheric conditions. In this way, the slung-load control system
is able to complete the mission with the performance indexes
shown in Table 2.

Table 2
Performance indexes in the worst atmospheric conditions.

Vgust =

[
2.5
2.5
0

]
Vgust =

[
3
3
0

]

Vturb = 7.5 · Emean = 1.47
· Emax = 4.80

Vturb = 10 Emean = 1.37 Emean = 1.72
Emax = 5.72 Emax = 6.86
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(a) Distances from no-fly zone 1. (b) Distances from no-fly zone 2.

(c) Distances from no-fly zone 3. (d) Distances from no-fly zone 4.

(e) Distances from UAV #1.

Fig. 9. Collision and obstacles constraints time evolution.

7. Conclusions

In this paper, a multi-level and distributed control system for a
multi-body slung-load system based on MPC has been proposed.
The control system is composed by different control modules to
solve trajectory planning, trajectory tracking and velocity and atti-
tude control, while taking into account multi-copter performance
constraints, obstacle avoidance constraints, the presence of input

saturations, robustness requirements and computational cost. The
first step of the algorithm consists of the calculation of the refer-
ence trajectory of each UAV as solution of a constrained optimiza-
tion problem, then optimal guidance laws are calculated based on
a MPC algorithm, finally PID control systems allow to control of
the UAV speed and attitude. A simulator has been developed and
different atmospheric disturbances has been considered to test the
proposed control system and its robustness. The numerical results
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(a) Constraint forces. (b) UAV 1 attitude.

Fig. 10. Constraint and attitude plot.

show the effectiveness of the proposed approach. Further work
will consist in implementing the control algorithm in a real-time
application to carry out flight tests.
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